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ABSTRACT

We construct approximation schemes for parameter identification
problems in which the governing state equation is a linear functional
differential equation of retarded type. The basis of the schemes is the
replacement of the parameter identification problem having an infinite
dimensional state equation by a sequence of approximating parameter
identification problems in which the states are given by finite dimensional
discrete difference equations. The difference equations are constructed
using linear semigroup theory and rational function approximations to the
exponential. Sufficient conditions are given for the convergence of solu-
tions to the approximating problems, which can be obtained using conventional
methods, to solutions to the original parameter identification problem.
Finite difference and spline based schemes using Padé rational function
approximations to the exponential are constructed and shown to satisfy the
sufficient conditions for comvergence. A discussion and analysis of numerical
results obtained through the application of the schemes to several examples

is included.
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1. Introduction

The purpose of this paper is the investigation of approximation methods
for the identification of parameters in control systems where the state
equation is a linear retarded functional differential equation (LRFDE).

" The parameters which we are interested in being able to estimate include
system coefficients, initial conditions and the delays themselves. The
methods which we shall discuss are based upon the discrete approximation
framework for the integration of LRFDE initial value problems developed
in [27] and [28]. The approach we take is to first replace the LRFDE
which governs the dynamics of the system by an equivalent abstract evolu-
tion equation set in an infinite dimensional Hilbert space. The abstract
evolution equation is then approximated by a finite dimensional discrete
difference equation. This in turn leads to a totally discrete finite
dimensional approximating parameter identification problem which can then
be solved through the use of standard techniques (see for instance [2§])
and software packages which are readily available. That the solutions to
these approximating problems in some sense approximate solutions to the
original parameter identification problem is the primary result discussed
in this paper.

As is pointed out in [Zj very little regarding the parameter identifica-
tion problem for delay systems (PIDDS) appears in the literature. This is
especially true for the case in which the delays are among the parameters
to be identified. More recently, however, research in this area has been
undertaken. Banks, Burns and Cliff [7] have extended the approximation
framework which had previously been developed to solve optimal control
problems governed by delay differential systems [l], [4] s [5], [9]

[12], [17], [22] so as to be applicable to the PIDDS as well. Their




approach is based upon semi-discrete methods (i.e. those methods in which
the LRFDE state equation is replaced by an approximating ordinary differential
equation) for the integration of the delay differential equation which
governs the dynamics of the system. The convergence arguments given by the
authors rely heavily upon an abstract formulation of the problem which
permits the use of linear semigroup theory and the associated approximation
results which have been developed for application in such a setting. Their
approximation framework is applicable to an extremely wide class of problems,
includes methods having an arbitrarily high order of convergence and is
capable of identifying the delays which appear in the state equation.

Banks in [2] develops spline based semi-discrete approximation schemes
which are applicable to PIDDS in which the delays are not among the param-
eters to be estimated and in which the state equation is a nonlinear delay
system satisfying global Lipschitz and differentiability conditions. While
an equivalent abstract formulation of the problem is employed, in this
treatment, the author has avoided the use of semigroup theory entirely.
Instead, the convergence of the approximation schemes is argued via the
dissipativeness of the nonlinear operators involved and the Gronwall
inequality. In [8] and [14] the ideas discussed in [2] are further
extended so as to be applicable to problems in which the delays are to be
identified as well.

In addition to the construction of approximation schemes, a discussion
of modeling problems arising in physiology, enzyme kinetics and unsteady
aerodynamics which involve parameter identification and control for delay

systems can be found in [3] and [7].




The framework which we shall develop is closely related to the ideas
contained in [7]. We treat essentially the same class of problems, rely
upon the same abstract formulation, apply many of the same functional
analytic techniques to argue convergence and in fact, incorporate the
same state discretizations as those discussed in [7]. The primary dif-
ference in the two approaches, however, is that our methods result in a
complete discretization of the problem and hence require no further
approximation when implemented. The methods included in our framework are
capable of identifying delays and the integration schemes which they rely
upon may be constructed with an arbitrarily high order of convergence. A
detailed comparison of the performance of the semi-discrete schemes
developed in [7] and totally discrete schemes similar to those which will
be discussed here when applied to parameter identification problems in
which the delays themselves are not among the parameters to be estimated
can be found in [ll].

An alternative treatment of the problem of approximating solutions to
the PIDDS which is also based upon discrete approximation via difference
equations is given by Burns and Hirsch in [13]. These authors have taken
a somewhat more straightforward approach by studying a specific scheme
(as opposed to developing an approximation framework as is done in [7]
and will be done here) which can be applied to PIDDS in which the LRFDE
contains a single discrete delay term only. (The schemes developed here
and those discussed in [7] are capable of handling equations which contain
multiple discrete delay terms as well as a distributed delay term). The
approximating difference equation is derived via the modification of
standard numerical integration schemes for ordinary differential equations
(i.e. Euler's method, fourth order Runge, Kutta, etc.) so as to be applica-

ble to delay differential systems. The authors are able to argue first




order convergence for the Euler based scheme directly and hence can avoid
the necessity for a functional analytic formulation of the problem.
Computational evidence supporting the feasibility of extending these ideas
to higher order schemes is also provided. However, the authors point out
that the possibility of extending the relevant convergence arguments is
uncertain. The Burns and Hirsch paper also addresses the difficulties
which can arise in the construction of approximation schemes for PIDDS

in which the delays are to be identified due to the fact that solutibns

to delay differential systems may not be smooth with respect to the delays.
This can pose problems since most standard optimization packages require
differentiability with respect to the parameters.

Although it does not concern itself with the PIDDS directly, the work
of Banks and Kunisch [10] should also be included in this historical outline.
In this paper the authors treat parameter identification problems in which
the governing state equations are semi-linear parabolic or hyperbolic
partial differential equations. The approach that they take is similar
to the one that is taken in [7]. Indeed, the infinite dimensional identi-
fication problem is replaced by an equivalent abstract formulation which
is then used to develop finite dimensional semi-discrete approximation
schemes. 1In a similar manner, the totally discrete schemes which will be
developed below could easily be modified so as to be applicable to
parameter identification problems with partial differential state equations.

We conclude this section with a brief outline of our presentation. In
Section 2 we state the PIDDS and show that it can be reformulated as an
equivalent parameter identification problem in which the state equation is
an abstract evolution equation set in an infinite dimensional Hilbert space.

In Section 3 we establish approximation results for abstract evolution




equations while in Section 4 we use these results to construct the approxi-
mating parameter identification problems-and to show that under the appro-
priate hypotheses, solutions to the approximating problems converge to
solutions to the PIDDS. In Section 5 we construct actual approximation
schemes which satisfy the hypotheses and conditions necessary for conver-
gence, while in Section 6 we discuss and analyze numerical results obtained
through the application of these schemes to several examples.

The notation we employ is, for the most part, standard. The symbol
Lan is used to denote the space of n square matrices. We denote the
space of functions defined on (a,b) with range in R" and p continuous
derivatives by C;(a,b) . The space of piecewise continuous functions
and the space of continuous functions on (a,b) with range in R" are
denoted by PCn(a,b) and Cn(a,b) respectively. The Lebesgue spaces
of R" valued functions on (a,b) are denoted by Lg(a,b) while the
Sobolev spaces of functions ¢ with ¢(m—1) absolutely continuous and
¢(m) in L;(a,b) are denoted by WE’P(a,b) . For a function ¢€5W{tz(a,b)
we shall use the notations D¢ and $ interchangeably to denote the
derivative of ¢ . Finally for a linear operator T , the symbols D(T)

and R(T) are used to denote the domain of T and the range of T

respectively.

2. The PIDDS and jits Abstract Formulation

In this section we formulate the parameter identification problem
for delay systems and show that it has an equivalent formulation, whereby
the dynamics of the governing control system in the form of an LRFDE
are replaced by an abstract evolution equation set in an infinite

dimensional Hilbert space. Since the PIDDS and the associated approximation




schemes which we shall develop are closely related to the problem and schemes
discussed by Banks, Burns and Cliff [7] the reader is instructed to note
the similarities which exist between the material and notation to follow
in this section and that which is contained in sections 2 and 2.1 of [7]

We begin with the definition of the admissible initial data/parameter
set and a formal statement of the PIDDS. Let r>0 and  a compact
Ru+\)

convex subset of rH be given. Define the compact convex set Q C

by Q= QxH where

H={h=(rj,r,..x €R’| O<r <r, <r, 1=1,2..v-1}

2" i i+1

In addition let S§ be a compact convex subset of RnXLfZl (-r,0) and define

I =8xQ=8xQx H

to be the admissible initial data/parameter set. We further assume that
we have been provided with an input/output pair (u,Z) € PC"(0,T)X ¢t (0,T)
for séme T>0. We refer to (u,l) as an input/output pair since it is
assumed that if given input wué€ PCm(O,T) the physical system to be
identified produces output I € CQ(O,T).

With the above definitions in hand, we can state the PIDDS:
(PIDDS): Given an input/output pair (u,z) € PCm('O,T) X C‘Q(_O,T) for some

* * k% * % Kk %
T>0, find v = (1 ,$ ,9 ) = (M ,¢ ,0 ,h ) € T which minimizes

(2.1) I =y v, - c@]? 4+ lyrsvaw oo |2
1 2
T
*of |y Cesy,w - o) |2
3

subject to




(2.2) x(t) = L(Q)x, +B(@u(t)  t€[0,T]
(2.3) x(0) =n Xq = ¢
(2.4) y(t) = C(a) x (£) +D(a) u (t)

where for each 0€Q, B(a), C(a) and D(a) are n*m, &%Xn. and LXm matrices

respectively, |- j=1,2,3 represent appropriately weighted (applica-
tion dependent) norms on RR, X, denotes the function 0 > x(t46)-r< 6< 0
and the notation y(-; Y, u) is employed in order to exhibit the explicit
dependence of the output y of the theoretical system on the initial
conditions and parameter values Y and the given input u. For each

qg = (a,h) = (oc,rl,r . r\)) € Q the operator L(q): erl(—r,0)~>Rn is

2

assumed to be of the form

\Y 0
L9 = 35 Aj(@)¢¢-r) + [ K(,0) ¢ (6)de
i= -r

0 v

with erEO and where for each a6 Aj(@) 1=0,1,2,...,v are nXn
matrices and 6 > K(a,8) dis an nxn matrix valued function in
Lz((—r,O), Lnxn) . It is assumed that A;(a) i =0,1,2,...,v, B(a), C(a),
D(a), K(a,.) are continuous in «.

Before we go on to discuss the parameter identification problem,
let us take a moment to consider the LRFDE initial value problem given
by (2.2) (2.3). Given Yy = (n,$,q) € T, a solution to the initial
value problem is a function x: [—r,T] +R" such that x € Wln’z(O,T), X
satisfies equation (2.2) almost everywhere on [O,T], x(0) =n, Xy = d.
Standard arguments [24] can be used to demonstrate that for each Y€ T

(2.2) (2.3) has a unique solution which depends continuously upon YE€T

and the non-homogeneous term u (as an element of LI;(O,T).). The




notation x(t;Y,u) (and xt(Y,u)) will be used to denote this unique
solution (and its past history on [t—r,t]) to (2.2) (2.3) corresponding

to a particular choice of Y€I and u¢€ L?(O,T).

Remark: One might be tempted to question the validity of choosing a

least squares payoff functional of the form given in (2.1) for the PIDDS
since in actual practice it is usually the case that for a given input

u, output can only be measured at discrete times 0§t0< ty .- < t < T,

In this instance a more appropriate choice for a payoff functional would

be the one used in [7] which is given by

1 ¢ 2
I =5 2 ly(esv,w =g, |
2 h| b
j=0
where the {cj}m are the given discrete output observations obtained

from the actual system which is to be identified. 0ddly enough, it is the
discrete nature of the approximation schemes to be discussed which neces-
sitatéstheuse of the distributed payoff functional given by (2.1). How-~
ever, this restriction can be circumvented via the use of an interpolation
scheme applied either to the observational data provided in order to
generate a continuous observation L(.) € Cz(O,T) or to the discrete
output generated by the difference equation based approximation schemes.
The latter approach is the one which is employed in [13] in order to over-
come this very same problem.

We next show that the PIDDS has an equivalent formulation as a
parameter identification problem in which the governing state equation
is given by an abstract evolution equation set in the Hilbert space Z

gilven by




7= Rnng (-r,0) .

with inner product

The quantity r which appears in the definition of the space Z is as
had been defined previously. For q=(a,h) € Q and (n,¢) € Z we

define the parameterized family of operators S(t;Q): Z+Z for t>0 by

S(t;q) m,¢) = (x(t; (M,9$,9),0), Xt((n’q),Q),o))

where x(-,(n,9,q),0) denotes the unique solution to (2.2) (2.3)
corresponding to q€Q , (N,$)€Z and u=0. 1In light of the existence,
uniqueness and continuous dependence results for solutions to the initial
value problem (2.2) (2.3) discussed earlier, it is not difficult to show
that for each q€Q the operators {S(t;q): t>0} form a CO semigroup
of bounded linear operators on Z. Furthermore, for each q€Q the
infinitesimal generator A(q): D(A(q)) € Z+Z of the semigroup and its
domain of definition (which is independent of q ) can be calculated.

They are given by
DA(Q) =D = {(n,4) € z[p € W] ,(-r,0),n = $(0)}
A(q) ($(0),9) = (L(q)¢,Dd) .

Turning our attention next to the non-homogeneous equation, for each
o€ 2 we define the operator ﬁ(a):Rm->Z by ﬁ(a)u==(B(a)u,0) and

consider
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(2.5) z(t;y,u) = S(t;q)(n,9) + gts(t-O;q)ﬁ(cx)u(O) do

0<t<T for each Y=(n,$,q9)=(M,¢,0,h) €T and u¢€ L?(O,T). Using
standard results from linear semigroup theory [20] it is easily verified
that the expression for 2z given in (2.5) is well defined and continuous
in t . Furthermore, under the somewhat more restrictive conditions that
(n,$) €D and ue CT(O,T) we have that (2.5) is the unique strong solution

to the initial value problem in Z given by
(2.6) 2(t) = A(q)z(t) +B(a)u(t)
(2.7) z(0) = (n,9)

It can be shown (see [4], [5]) that under the same conditions
w(t) = (x(t;v,u), x (Y,u))

is a strong solution to the initial value problem given by (2.6) (2.7)
as weil. It therefore must follow that =z(t) and w(t) coincide for
0<t<T. By making use of standard density and continuous dependence
arguments the equivalence of z and w can be extended so as to hold
for all (n,¢) €Z and u¢€ L?(O,T) . We state this conclusion in the

form of a theorem.

Theorem 2.1 Let x(+;Y,u) denote the unique solution to the LRFDE
initial value problem (2.2) (2.3) corresponding to Y€T and uELI;(O,T) .

Then for 0<t<T we have

z(t;y,u) = (x(t;y,u), xt(Y,u)) .
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In the light of Theorem 2.1 above, the equivalence which exists between
solutions to the LRFDE initial value problem (2.2) (2.3) and the 2Z

valued function given by expression (2.5) permits the reformulation of

the PIDDS as an equivalent (l1-1 correspondence between solutions) parameter
identification problem in which the governing state equation is now given
by (2.5). 1Indeed, if we define for each o€ { the operator a(a): Z-*RR

by C(a)(n,$) = C(a)n then the PIDDS is equivalent to the following

abstract parameter identification problem.

which minimizes J(Yy)

]
Vv
o
-
h
[
=}
(=N
<
*

1}
~~
=
-
<
-

o)
>*
N’

I
~~
3

*
-
-
*
R
*
-
=2
A
m
-

given by (2.1) subject to

t

(2.8) z(t) = S(t;q) (n,9) +[ s(t-0;q)B(a)u(o)do
0

(2.9) y(t) = C(a)z(t) + D(a)u(t) te [0,T] .

The fact that there exists a 1-1 correspondence between solutions to the
APIDDS above and solutions to the PIDDS forms the basis for the approxima-
tion schemes which we construct in the succeeding sections. Indeed, we
shall obtain approximate solutions to the PIDDS by constructing convergent
approximation schemes which are applicable to the APIDDS and which are
based upon finite dimensional difference equation approximation of the

state equation given by (2.8).
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3. Approximation Results for the Abstract State Equation

Fundamental to our approximation schemes for the PIDDS is the
construction of convergent finite dimensional discrete approximation
schemes for the state equation given by (2.8). Indeed, the approach we
take is to replace the APIDDS by a parameter identification problem in
which the governing state equation is now a finite dimensional linear non-
homogeneous difference equation which depends upon q € Q . For each
q € Q , the solutions to these difference equations will, in some sense,
approximate the solutions of (2.8). If we let N represent the degree
of approximation, and if the Nth approximating problem is solved for
Y; , an element in the admissible initial data/parameter set I which
minimizes a discrete least squares payoff functional which approximates
(2.1), then we shall see that the compactness of [' and the convergence
of the state approximation are sufficient to guarantee the existence of
a subsequence {Y; } of {Y;} and a Y*G I' such that Y; > Y* as
k>~ with Y* a zolution to the APIDDS. In the light of the equivalence
established in Section 2, it then must necessarily follow that Y* is a
solution to the PIDDS as well.

The above ideas will be made precise in Section 4. In this section,
however, we shall concentrate exclusively on the abstract approximation
results which are fundamental to the construction of convergent approxima-
tions to the state equation. These approximation results can be considered
to be discrete analogs of the well known Trotter-Kato Theorem [20] which is
frequently employed to establish the convergence of semi-discrete approxima-
tions to semigroups of operators. Although the theorems we shall state and

prove below are quite similar to results appearing in [28], a direct applica-

tion of the treatment in [28] to establish the convergence of the state
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approximations for the PIDDS is not possible. This is a consequence of
the fact that since the delays can appear among the unknown parameters,
the largest delay, T which plays a crucial role in our formulation,
may no longer remain fixed with respect to the degree of approximation.
In what is to follow we shall employ the following conventions.
For a rational function of a complex variable tr(z)=p(z)/q(z) we denote
the degree of r(z) =degree of p(z)- degree of q(z) by degr(z).
For T:D(T) CH+H a }inear transformation on a Hilbert space H we say
TeEGM,B) 4if T 1is the infinitesimal generator of a C0 semigroup of
operators {T(t):t> 0} satisfying |T(t)|§_MeBt . Furthermore, for
A€ p(T) , the resolvent set of T, we denote the resolvent of T,
O1-T) ! by R, (7).
For Te€GM,B) and A€ p(T), using standard results from the theory

of semigroups of operators (see [28]) the following two bounds which are

employed frequently below can be established:

(3.1) R ¢ 7og
(3.2) TR, (D] < 1 +§[2—AL_’%5 M, .

We formulate our approximation framework in the same general setting
as the one used in [7] Let (Z,<+,*>), (ZN,<-,->N) N=1,2... be Hilbert

spaces with norms !l and |- !N respectively. For each N=1,2,.. let

XN be a closed subspace of ZN and let HN: ZN-> XN be the orthogonal

projection of Z onto X _ with respect to the <.,.>

N N inner product.

N

Let IN: Z-*ZN be a mapping which is onto ZN and which satisfies
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[[NzIN ¢ |z| for each z€Z . Finally, we define PN: Z—>XN by PN=HNIN,
and note that |PNZIN < |z| for each z€z .

Our basic approximation result is given in Theorem 3.1 below. The
proof of Theorem 3.1 relies heavily upon the following lemma which is due
to Hersh and Kato [18]. The proof of Lemma 3.1 in the form in which it

is stated here can be found in [28].

Lemma 3.1 Suppose
(1) TeGM,B) is the infinitesimal generator S6f the CO semigroup
of operators {T(t):t >0} .
(2) r(z) is a rational function of the complex variable =z which
satisfies
(a) ,ez—r(z)l =O(,z,m+1) z>0 with m>0
(b) deg r(z) < m+l
(¢) r(z) has no poles in {z€C:Rez < 0} .
Then there exist positive constants ﬁ, € 1independent of T € G(M,B8) such

that fhe operator r(hT) exists, Moreover for fGD(Tm+1) we have

Bh ITm+1 hm+1

|T(h) £ - r(WT)£| <Me £

for all h with 0<h<e .

Remark 3.1 Our concern with the existence of the operator r(hl) is
necessitated by the fact that r(z)=p(z)/q(z) is a rational function.
The existence of the operator r(hT) is dependent therefore upon the

existence of the operator inverse of q(hT) .
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Theorem 3.1 Let 2Z, ZN’ XN and PN be as they have been defined above
and let T be a fixed positive real number. Suppose for some M, we
have that A€ G(M,B) 1is the infinitesimal generator of the CO semigroup
of operators on Z, {S(t): t>0} and ANE G(M,B) is the infinitesimal

generator of the CO semigroup of operators on XN, {SN(t): t201}

N=1,2.... Suppose further that
(1) There exists DCD(A), a dense subset of Z such that

R)\(A)D CD for each MA€C with ReA>R and for each z% D we have
A - A -~ N> ~
| APy 2~ PyAzl as N

(2) c(z) is a rational functicn of the complex variable =z € C

such that

]m+1)

(a) Ic(z)—ez| =O([z as z+0 with m>0

(b) deg c(z)§m+1
(c) c(z) has no poles in {z € C: Rez<0}

N, .
(3) {r\)}N is a sequence of positive real numbers satisfying

1
0'<r§<_ r<o N=1,2...

(4) {pNj:=i is a sequence of positive integers determined by the

following relation

N_N

or
N—V<_ T <(EN+1)

N
—N‘i N=1,2...

Then there exists an N such that the operators on X, given by

N

N
T -
C(T\) AN) exist for all N>N and moreover if the infinite collection

of operators
N

Nk P
C(—V—A ) N>N
N N

k=0
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are uniformly bounded, then given € >0 , there exists an N>N such that

N k N
c ‘F‘ AN PNZ - PNS '—N-"- z

k=0, ,2...pN for all N>IG and each z €2 . (Equivalently stated:

N k kN
el =2A P.z-P. S ———\-)-)z
N 'N N N N

<€
N

—0 as N+® uniformly in k, k€{0,1,2...0}
N

)

Proof N
- Ty
The existence of an N such that the operators C(? AN) exist

for all N>N is a consequence of Lemma 3.1l. We next assume that the

j r\I)] k pN -
operators (c N AN N>N are uniformly bounded. Let MO be
k=0
such that
N k
Ty
(3.3) C(YAN) iMO

k=0,1,2...pN,N>fI. Then for ze€Z and k=0,1,2...pN we have

N
rg K krg -

< — A - —

ST /BTSN T PNJZN

1l
=3
+
~3
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If one compares the hypotheses of the present theorem with those of
Theorem 3.1 in [7:[ it is clear that an application of the latter result
implies that Tg-*O as N-»>o uniformly in k, kE{O,l,Z,...pN}.

We next consider the term Tlil . Applying Lemma 3.1, the fact that
ANG GM,R), (3.2) and (3.3), the following estimate can be made. For

AL€C with ReA>B we have

N o N N N
k-1 T r r r
- Y oY (B (k-j-1) v) w1
I._ C( N AN) [c( N AN) SN( N )]SN( v JRVAy) T By
IJ_O N
N N N
k-1 -V _ ' (k-j-1)"v m+1
RSB [C(N AN) SN( N )]SN( N )RA(AN) Py .N
j=0
N N
k-1 FTy N e (GedeD) Tu g Ay
< MM e N(Ty N N N AN N
, j=0 N
Rry, N \mt+l N
k-1 r T
2 “N‘(_v) ((k-j—l)_\)) -+l m+l
= MM 2 e N 'SN N /Ay RyAy) TRz
j=0 N
N
1 Bry N\ mtl N
. ko N _\)) ((k—j—l)__\_)_) wrHl
SHM 2 e ( N .SN & ) || ARy Ay Pn2
j=0 N
N N
. k=l Ty wl BTy g ego1)Ty .
Y N
< Mgt 2 |\ g e N e {ANRA(AN)‘ |z]
i=0
+1 Ty
< Mg, |z (? e




N
r m+l
B2 k-1 /"
~ - mtl N \Y
< MOMMMA ]zle (—N-)
j=0
rN rN m
~ 1 BT N[V V
< wnie 1o (e ) ()
rN
~ 1 T Vv
< MOWTT e8 IZI(T)

N m
r\)
alz](—N—)

where q = MOMIV[MI;'-IT PT .

Under the present hypotheses, it is not difficult to demonstrate
(see Theorem 4.9 of [28]) that for each z€Z and each A€C with’

ReA > B
mt1 m+1
] [PNR)\(A) ‘R)\(AN) PN]z|N+O as N»>wo ,

Therefore it follows that

N k kr \1
Y v mt+1
[C(T AN) - SN( T). PRy (A 2]y
Nk ke
v _ v m+l m+1
< [C(N AN) SN( N ) [PNRA(A) Ry (Ay) PN]Z|N

Ty krg)] mt+l
[C(WAN 'SN(? Ry(Ap) ™ "Byz

N

B "y
< (M0+Me N )HPNRA(A)mH"RA(AN)mHPN]Z'N
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< oty +ue | [2R, W™ v, (4™ e Y2 ]

m .
+u|z](%) »> 0 as N »> «

and hence
N k N
V

(% 4) -5l )]ne

uniformly in k, k€{0,1,2...0"} for each z€R(R,(A)
m+1

N—'O as N > »

m+1) . However,

Am+ 1

R(R)\(A) ) =D( ) which is a dense subset of Z (see [23]). Further-

N krN

r k <

more the operators on Z given by [C( Y A“\’ - S“( —\—)”P“
L\ wny LAY [ |

AT \T
N iN

k=0,1,2...pN are uniformly bounded in N for all N>N . Indeed

N k N
r, A ) (kr\)

HC(_&_ n/ ~ Sy —I:I_)]PN

N

k=0,1,2...p0 all N>N . Therefore

N k N
r, ) (krv )
[c(? A ) - S\ T }PNZ

N

> >
NOasNoo

uniformly in k, k€{0,1,2...p for each z€Z and the theorem is

proven.

Remark 3.2 When actually realized for the puspose of developing approxima-
tion schemes for the PIDDS, the constructs appearing in Theorem 3.1 take
the following form. The space Z 1is of course R™x Lg (-r,0),

ZN=Rn>< Lg (—rg,O), XN is a finite dimensional subspace of ZN such as

the AVE or spline subspaces discussed in [28:[, IN is the operator that

takes (N,$) € Z into z= m,d) in ZN where ¢ 1is the restriction of

¢ to [—rﬁ,O] and c(z) might for example be chosen from among the Pade”
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rational function approximations to the exponential (see [28], [30]).

Once a basis for X has been chosen, AN can be represented by a matrix

N .
r k
as can the operators c(-;% AN) k==0,l,2...pN. If the AN are constructed
and c(z) is chosen so as to comply with the hypotheses and conditions of
N _ k) N
Theorem 3.1, for zoe Z and t, = 3%-6 [O,T] k=0,1,2...p we have

N k
r
that z(tE) = S(tg)z0 is approximated by zg = c(-ﬁiAN) PNZO' The

construction of X_ and AN and the selection of «c¢(z) so as to lead to

N

convergent approximation schemes is examined in detail in Section 5.

Remark 3.3  Implicit in condition (1) in Theorem 3.1 above is the
assumption that PN17C D(AN) N=1,2.... However, as has been remarked
above, in practice, XN is chosen to be finite dimensional in which case
AN:XN"’XN is a bounded operator with D(AN) = XN .

Remark 3.4 1In what is to follow we shall frequently refer to AN € G\M,B)
as the spatial stability condition and (3.3) as the temporal stability
condition.

It is not surprising that an estimate of the rate of convergence in
Theorem 3.1 would depend upon both the degree to which the AN approximate
A and the degree to which c(z) approximates e . An application of
Theorem 3.2 of [7] and arguments similar to those used to verify Theorem

4.17 of [28] can be used to establish the following Theorem.

Theorem 3.2 Under the hypotheses and conditions of Theorem 3.1 suppose
that B 1is a subset of D(Az)f\D for which

(1) For each z €B there exists a K=K(z) such that

|AgPyZ - P, |y < K(z) /NP

N le
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(2) There exists a subset B1 of B such that for z¢€ B1 and
A€C with ReA>RB
(a) S(t)z€B t € [0,1]
(b) S(t)(\I-A)z€B te€ [0,T]
and the constants guaranteed by (1) for (a) and (b) are independent of
t€ [0,T].
Then for each z¢€ 61(\ D(Am+1) for which ()\I—A)jzeB j=0,1,2...m

there exist constants I(1 =K1 (z) and K2 = Kz(z) such that

N k /kr.N. \

r., \ 5 i . \
(ay) r - sl o el < 0 () #lE)

4. Approximation Schemes for the PIDDS

In this section we employ the approximation framework outlined in
the previous section in order to define the approximating parameter
identification problems. We then go on to demonstrate that if constructed
appropriately, the solutions to the approximating problems converge to a
solution of the PIDDS.
0 n 1 n . .
Let T :Z>R ', 7 :Z->L2(—r,0) be the canonical coordinate projections

of Z given by Tro(n,¢)= n and Trl(n,cb) = ¢ respectively. For {qN} a

sequence of elements in Q with

, _ N N N
qN = (OLN’hN) - (O‘N’ (1‘1,1'2,...1'\)))
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n n N
let ZN = ZN(qN) = R X'LZ(-rv,O), let XN = XN(qN) be a closed subspace of

ZN’ let IIN = HN(qN) be the orthogonal projection of ZN onto XN with
respect to the ZN inner product <',°>N defined by
T 0 T N
<(My0), (G)>y =ng+ f JORTOFNGLY
—rg

where gN is a positive weighting function which will be described in
Section 5, and let IN = IN(qN):Z—*ZN be the mapping which takes (n,¢) &€ 2
into (n,$) € ZN where 5 denotes the restriction of ¢ to [—rﬁ,o:[.
Define Py = Py(q):Z>X. by Py(qy) =T (q)Iy(q) and let Ac(qy)

be a linear transformation defined on XN with range contained in XN'
Finally let c¢(z) and d(z) be rational functions of the complex
variable z and let 6 be a fixed positive scalar with 0<6<1. With
these definitions in hand, the approximating parameter identification
problems can be stated as follows.

(NPIDbS): Given an input/output pair (u,Z) € PCm(O,T)><C2(0,T) for

*

* x k K %
quN) = (nN,¢N,aN,hN) € ' which minimizes

* *
some T>0 find vy = (nN,¢

3400 = |yg@rsu) -5(0) If,l #lyp, () -2 (D) If,z

N
Ty pz:_l N r\) 2
+ = lys (vsu) =5 (35D |
N §=0 3 N LAY
subject to
N Y i
4.1) 25 = c( T Ay(@) By (@) (n,9) +

3
r r r R Lx
- Elu—NX Ag(@)3 P o5 Ay (@) Py (@ B@uY
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jr

A \Y . N
(4.2) vy = 8@z} + D@u(P 3= 0,1,2,...0p

where ﬁ(a), a(a), D(a) are as they were defined in Section 2,

N .
o= (M,$,q) = (nyd,a,h) = (n,¢,a,(r1,r2...rv)) and p is that positive

Nr r

Vv N v
P N-<-T<(p+1)N .

integer for which

Under reasonable continuity assumptions (which will be satisfied by
the specific schemes we construct in Section 5), for each N, the approximat-
ing parameter identification problem becomes the minimization of a continuous
function over a compact set, and hence we are assured of the existence of a
solution.

6r
Remark 4.1 The inclusion of the operator d( i%—AN(q)) in the state

equation is a consequence of the theory developed in [28]. In that paper

it is shown that if d(z) is chosen as a rational function approximation
or
to the exponential for which d( i;-AN(q)) satisfies certain hypotheses

(which appear in the statement of Theorem 4.1 below) then the convergence

properties of the state approximation will be enhanced.

Remark 4.2 If for each q€Q and N=1,2..., we define the operators
N m N N Or,, ~

B ég):R -+XN and A (q):XN-*XN by B (qiu = d( WE-AN(q))PN(q) B(a)u =

d( 7¥-AN(q))PN(q)(B(a)u,O) and AN(q) = c(j%-AN(q)) respectively and let

0 N Ity N
zN(y) = PN(q)(n,¢) and uj = u( 7?9 j=0,1,2...p" , it is immediately
clear that (4.1) is the classical variation of parameters solution to the

linear non-homogeneous difference equation in X_ given by

N

N_ N, N N, \ N . N
(4.3) zj = A (q)zj_1 + B (q)uj_1 j=1,2...p

N 0
with initial condition zy = zN(Y). Furthermore with the state equation

written in the form given by (4.3) and with the exception of the fact
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that in its most general form the admissible initial data set is infinite
dimensional, the approximating parameter identification problems are

easily recognized to be in the standard form of a finite dimensional
discrete linear-least squares parameter identification problem for which
conventional numerical methods can be used to obtain solutions (see Chapter
4 of [29]). In practice the compact admissible initial data set S (see
Section 2) is almost always finite dimensional. In fact, the set § 1is
usually chosen to be the span of a finite collection of elements
{$1’®2""aL}c Z over a bounded subset of RL where the unknown parameters

to be determined are the coefficients.

* o* * * % % * Kk %
Theorem 4.1  Suppose {YN} = {(zN ,qN)} = {(nN,¢N,qN)} = {(nN’¢N’aN’
N* N* N*
(r1 5Ty 5e-esT ))} CT 1is a sequence of solutions to the problems
. * o* * k k% X k Kk % *
NPIDDS and there exists vy =(z ,¢) =M ,$ ,q) =M ,$ ,0 ,(rl,...,rv)G r
x % * % * *
such that YNr*Y in the sense that (a) qN-+q in RU+v and (b) zg -+zo

. * %
in Zv as N-=, Suppose further that PN = PN(qN).Z-*XN(qN),
* * * * N* *
Ay = Aglay) Xy *X(q), A =A(q):D € Z+Z, c(2), {r '} = {(qN)w\,},
N* N* N* N*, *
po =P (rv Y =p (qN) satisfy the conditions and hypotheses of Theorem
3.1 and that

(1) The infinite collection of operators

N*

N* ky o
(% a)
{c ™ Anlay } k=0

are uniformly bounded for all N sufficiently large, and
(2) For 6¢ [0,1] fixed, and each z€7Z we have that for the
N
rational function d(z) the operators d(e%f-AN(q;)) exist and

satisfy the condition
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orN* * * *
(4.4) 'd( _I\\;— AN(qN))PN(qN)z - PN(qN)Iz N->0 as N> |,
Then
* N * N, %

*
as N2> uniformly in k,]sE{O,l,Z...pN } where 2z and zg are given

N krV* N*
by (2.5) and (4.1) respectively and tkf= _%_ k=0,1,2...0 .
Proof N®

T
v *
The existence of the operators c(—ﬁ—-AN(qN)) for all N sufficiently

large is guaranteed by Theorem 3.1. Let MO be such that

N* k

r\) %
C(TAN(QN)) 'Nf MO k=0,1,2...p

N*

for all N sufficiently large. Then

1P (a5 z(eN5v™,0) - 2 (v |
N qN z k’Y s u Zk YN)U
| >
_ * N * 0% * N_ . Ko _
Py(aps(esa )z +Ry(ay [ st -03q)B@)uo)w
0

V * 0% V v *
N* . Nk
o (03 ayea) maics ()
6 An(ay) ) BylayBlagpu ==




26

N* k
r

* *_ Q%
< 'PN(q;)s(tE;q*)zo*_C(_;\I)_AN(qN)> Pylay)z ’N

N*
O*

k
Ty * ) k. Q%
* C(TAN(qN) Pylay) (27 -2y )}N

N
l x Lk N * ~ %
+ PN(qN)f S(t, - 039 )B(a Ju(o)do -
0

rN* k rN* k-j rN* er*
BN R BRI TN
= szll el AyGay) 45 Aylay) Bylap Bl 5|
- N N N
= T1+T2+T3 .

*
The term TT tends to 0 as N-»® uniformly in k, k¢ {0,1,2...pN } by

Theorem 3.1 while

R k
N ( v * ) * 0* 0%
T, = {e\—~ AN(qN) PN(qN)(z zy ) .
0* 0%
< Mo|z —ZN l >0

*

as N-=>© uniformly in Kk, k:€{0,1,2...pN }. We next consider the term
N

T3.
tN

k

< fPN(qg)s(tz-o;q*)ﬁ(a*)u(omo-

eN

k * ~
f PN(qN)S(ti-O;q*)B(a*)uN(o)do
0

N

tN

* N X A, %
+ | PN(qN)S(tk—o;q )B (o )uN(o)do
0
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Nk P
v * N . k A %k ( \ )
- = }:_‘,pN(qN)S(tk_j,q )B(a ) u| ——
j=1 N
Nk 5
v * N | Aok ( v ) _
+| = JE:lPN(qN)S(tk_j,q B eul -
N* | N* k-j . N*
r\) (r\) * ) P LN (Jr\) )
N* g N* k-] , N*
N r, > (r\) *) o (Mt (Jr\) )
~ J.=1c -~ Ax(ay NGyt B u\
Nk k-3 , N \ 50
vV \Y) * Vv * k A * v
3 j{)lc( D) a(o o) Py CaaB @yl )
Nk Nk k-j , N 50
Vv v * ( Vv * ) A %k ( vV
| = szilc( = AN(qN)> a\0—— Ay (a)) Py (a B u| ) -
NE K k-] , N¥ 5
Vv - ( \) . * ) ( Vv *) X A %k '( vV )l
N & SR Autag/ A\ Ayl BylaBleel = /i

S S R
1 2 3 4

where uy € PC"(0,T) is defined by

N N N

u(t,) o€ [tk—l’tk,)
uN(O) = k= 1,2...pN*

u(T) o€ [ ,.1].
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For each N sufficiently large and each t¢€ [O,T] we define the following

. . n
parameterized families of bounded linear operators with domain R and

range in X_ . For né€R" and té€ [0,T], let

N

A *
(1) T(n = Pe(qs(t,q ) (n,0)

(ii) SN(t)n

N* k
N r\) * *
(iii) cN(t)n = C(T AN(qN)) PN(qN) n,0)

N¥*
A N r\) *) *
(iv) dn=4d B_TT_AN(qN) PN(QN)(U,O)

@ = 2glap) 0,0

*
Using the fact that {S(t,q ):t>0} is a C

N N )

* N %
Py (a)s(t 39 ) (n,0) te [t .t

*
k=0,1,2...0"

ce eV, eV )

b bl

*
k=0,1,2...0"

semigroup of bounded linear

operators on Z and Theorem 3.1 it is not difficult to show (see Lemma 9.1

of [28]) that for each ¢t¢€ [O,T]

(4.5) 15 (e) -5 (©) || > 0 as
(4.6) 183 (6) = ey () || > 0 as
4.7) HEN-IN]] ) as

where the norm in (4.5), (4.6) and (4.7) above
by the uniform operator topology on B(Rn,Z ),

linear operators with domain R™ and range in

is the one which is induced
the space of all bounded

ZN.
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We now return to the terms T? j=1,2,3,4,5 and treat each one
separately and in turn. Since u€PC™(0,T) it is therefore Riemann
integrable on [O,T] and hence

tN

k
¥ - 'f Py(ay) $(ty -3¢ )B(@") (@) - uy@)ao|
0

-
|

N
Yy
A N *
'f TN(tk-o)B,(oc ) (u(o) —uN(o))d,
0

N
tN
K
< f ‘fN(tE-o) IB(OL*)Hu(G)—uN(O)'dO
0

T

M efT lB((x*) |/ |u0) - ug(@) |do >0 as N w
0

I A

*
uniformly in k, k.G{O,1,2...pN }.

~

Using (4.5) above we have that HTN(T-O)-SN(T-O)!! tends to zero

for each o€ [O,T] as N » o ., Moreover H%N(T-—G)-gN(T-O)II is

B(T-0)

dominated by g(0)=2Me which is integrable on [O,T]. Therefore,

by the Lebesgue dominated convergence theorem we have

N
3
k A N .
) f Sty ~ 0) B )uN(o)doN
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N
‘K
- l/(fN(tg—O) -8y (ty = 0))B( uy(@)do|
0

T
g/ |]fN(T-o)-§N(T-o)|| IB(a*)l luy (o) |do

0
T
* o) A
< |B(a)] |u[°°f”TN(T—O) ~§(T-0)|[do > 0
0
* -
as N-+® uniformly in Kk, k€{0,1,2...pN }. Using (4.6), g(O)=Me6(T O)+M0

and reasoning similar to that used above we have

N* N* k-j

k T
N_| Ty X N K ( v * ) * )
T3~ | N jE____:l(PN(qN)S(tk—j;q )melwAxy)  Byley)
| N
~ % (3T, )
B(OL )u( —N— IN
e)
K j
A ~ *
= ‘Z_Zl f (SN(tht_G)_CN(tE—O))B(a )uN(O)dO
=1 % N
t,
j-1

IA

N

k
/ ”§N(t1lj‘°) -QN(tg—o)H ]B(u*)l lug(0) |do
0

A

T
5@ Jul, f 18y-0) - &4 -0) || do > 0
0




31

*
as N-> o uniformly in k, k€{0,1,2...pN }. Using (4.7) we have

N* k-j ‘ N*

Nk r, r
N \Y * * 6 v * LN
Ty = |7€'}§i c( N(qN)) (PN(qN)I"d( N AN(qN))PN(qN)
. N*
A % Jr\)
B(a )u( —-——)I
N N
* x -
jr
\) n * V
<My {:l o sl T)IN
rN*
Vv A ~ *
<My T (- dgll 13 ful,
j=1
N*
r
NV

{A

~ ~ *
MO ”IN_dN” |B(0' )l |u|oop

A

* oY ~
MO|B(a )| ]u]oo'l‘ ||IN—dN||-> 0 as N>

N4

uniformly in k, k€{0,1,2...p Finally, recalling that B has been

assumed to depend continuously upon the parameters, we have

NE o N k~j N
TN=’%. 1c( N AN(q;)) d(g N A (qN))P (qN)
P
. N*
N ~ jr
(B -B(a;))u< —§—)f
N
N¢ N* k-3,
<5 Bl 5] bet s
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N*

r

* * N* ~v

< MM, [B(a) - Bl [ul 0" —

* * +>0 N > o
< MM, |u T[B ) = B(oy) | as

*
uniformly in k, kG-[O,l,Z...pN } where M., 1is the uniform bound on the

oy 1
operators d( —)L-AN(qN)) guaranteed to exist by the strong convergence

N
condition given in (4.4).

Therefore

N, N

N __N,_.N N -
T3 —T1+T2+T3+T4+T5%-0 as N -

*
uniformly in k, k€-[0,1,2...pN } and the theorem is proven.

Lemma 4.1 If, under the hypotheses and conditions of Theorem 4.1 we have

(4.8) 1P (q)z + 1z

in R" as N-»o for each z€Z . Then
N, * N *
|Yk(YN;U) -y (e sy ,u)| > 0

*

as N-»>« uniformly in k, ké{O,l,Z...pN } where for each Yyé€T ,
*

u € Pc®(0,T), ke {0,1,2...pN } and all N sufficiently large

N . .
y(tk;y,u) is given by (2.9) and yz(Y;u) is given by (4.2).

Proof
N, * N *
[y Crgs ) =y (e57 5 u) |
N*
kr
N kN, % *

é(a*)z(tfj;y*,u) —D(a*)u(tgﬂ
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< [eay) @z (v |
+ 1o @0t -1, 2Ny 00 |
+ lc(a*) (TTOPN(q;)z(tE;Y*,u) - ﬁoz(tE;Y*,u))I
+ | - uE)|

< ety - c@)] | zherysw N

* * * *
+|c@)| lﬂOPN(qN)Z(tIIj;Y ,u) —ﬂOZ(tg;Y ,u) |

+ lulwlD(a;)-D(a*)l

1

N N N N
T1+T2+T3+T4 .

In light of the convergence guaranteed by Theorem 4.1, it is easily
N*
*
verified that {IZE(Y su) | 3P lie in a bounded subset of R which
NN T k=0
is independent of N for all N sufficiently large. Therefore using

* *
the assumptions that ay > o in R¥ as Now and C(a) and D(a)

depend continuously upon the parameters we have TT > 0 and TE > 0 as

Ny,

N> uniformly in k, k€{0,1,2...p The term Tg tends to zero as

*
N > o uniformly in k, kGf[O,l,Z,,.pN }

as a consequence of Theorem 4.1.
Finally (4.8), the fact that the set § E{z(t;y*,u):te [O,T]} is a compact
subset of Z (being the continuous image of a compact subset of R) and
the uniform boundedness of the operators NOPN(q;) imply WOPN(q;)-+WO
uniformly on § as N+~ and hence T§ *0 as N+« yniformly in k,
ke{o,l,z...pN*}
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We can now state and prove the major result of this paper which is
that in a certain sense (which will be made precise in the statement of
. * th , .
Theorem 4.2 below) a solution YN to the N approximating parameter
*
identification problem is in fact an approximation of a solution y of

the PIDDS.

* L
Theorem 4.2  Suppose {YN} = {(zg ,qN)} CT 1is a sequence of solutions

* * %
to the problems NPIDDS. Then there exist a y = (z0 ,q )€TI and a
* * * * . .
subsequence {YN I of {YNJ such that Yy >y as k-« in the sense
* 1; uv 0* k 0*
that (a) dy + q in R and (b) zy > z in Z as k-o>x ., If
in addition PN—-PN(qN), AN = N(qN), A=A(q ), c(z), d(z) and p° =

x %
pN (qN) satisfy the hypotheses and conditions of Theorem 4.1 and if

* *
PN(qN) satisfies (4.8) then Y is a solution of the APIDDS (and therefore

to the PIDDS as well).

Proof

Since SCZ has been assumed compact, there exists a subsequence

* * * *
{zo } of {zg } such that z0 > z0 €S as j>« . Similarly Q(:Rp+v

N, N,
J J * *
compact implies the existence of a subsequence {qN‘ } of {qN } such that
* * * * * Je 3
. 0 . . .
qq, *9 €Q as £>« . Letting Y =(z” ,q ) and reindexing, we obtain a
Iz * * * *
subsequence {YN } of {YN} such that 7y >y € ' as k=>o .
k k
For each y= (zo,q) = (zo,oc,(rl,rz...,rv)) €T, u€ PC™(0,T), (;ecﬂ(o,T)
and all N sufficiently large we define yN, ;N, CNGEPcz(O,T) by
N N
y (@) = ¥ (937,0) = y(e)3y,u) ceI] k=0,1,2...0"
~N ~N
Y0 = 3O5Y,0) = v (v;u) ceIy k=0,1,2...0"
N N N
() = & (o5y) = t(t) T IE k=0,1,2...0"
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kr
N__.N N N _ v N N
where Ik— Ik(Y tk, t+l X k=0,1,2...p and p
r,
\)
that integer for which pN w < T<(p +1)-— and where y(-*;Y,u) and

y.(Y;u) are given by (2.9) and (4.2) respectively.
If {YN} is a sequence of elements in I for which YN+Y€ ', then

Lemma 4.1 implies
~N .
(4.9) ly (CHMNY -yN(U;Y,u)f + 0

as N=+o uniformly in ¢ for o€ {0,T|. Furthermoge the continuity of
k

T
y(*,Y,u) and ¢(*) and the fact that length(Iﬂ) = ?\)i {]— > 0 as
N->o imply
N
(4.10) |y (o3v,u) - y(o3v,u) | > 0
and

ICN(O;YN) -z(0)| + 0 as N > «

for each 0 € [O,T]. The triangle inequality, (4.9) and (4.10) imply
yN(O;YN,u) + y(0;Y,u) for each O¢€ [O,T] and hence by the Lebesgue

Dominated Convergence Theorem we have for any Y€T

36" = Iy @3y ,w = ¢ @2 + |yt w -om |2
1 2

*
+f ly(tsy ,u)-c(t)li dt
A 3
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N
~k * 2
= lim |3 “(03vg »w) -2 O] +
k> k 1

AN *
lim |y k(T;YN »u) —C(T)lé +

k> k 2
T
N N
A k * k * 2
flim ly CH su) - ¢ (t;YN )lw dt
k> k k 3
U
N
) k, * 2
= lim |y (v 50 -c(O[] +
k> k 1
N
. k * 2
lim |y g (g 5w -0(D|g +
k>~ pk k 2
T
N N
) ~ * 3 * (12
lim f ly k(t;YN R CHE )lw dt
k> k k 3
0
N
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= lim Iyo (g ;u)-C(O)Iw +
k> k 1
N
. k * 2
lim |y N Oy ;U)—C(T)IW +
k> pk k 2
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k
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k> N N
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Ng

r, A -1 Nk (35)_> 2]
+ N j:ZO | yj (Y,U) - C N |W3

o

k

N

N
= lim [Iyok(y;u)-l(o)li +|y1§ (Y;u)-c(T)If]
1

(j+1)r\)

k N

AL . N 9
+ 2 |y k(t;Y,U) -C k(t;Y) |W dt]
25 3

N AN
- 1in (150w -c® 12 +15 *asvw - o |
1

k»>o>

I x N
+f |}Ar k(t;\(,U) -z k(t;w/) Ifr dt]
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= ly©sv,w) - 2@ +|y(msv,0) -2
1 2

N N
A k 2
LA ORI AT

k >

+

© N

lysv,w) - 2@ |2 +[y(msy,w - |2
1 2

T
+ [ Iyesvw -t o
0

J(y).

* *
Thus J(y ) < J(y) for any vYé€T and Y is a solution to the APIDDS.

5. Examples of Convergent Approximation Schemes for the PIDDS

In this section we construct specific examples of convergent approxima-
tion schemes for the PIDDS. That is, given a sequence {qN}(IQ with
qy > q€Q as N-+» , for each N=1,2... we define XN , a closed sub-
_pn,.n, N .
space of ZN-R X L2(—rv,0), HN.ZN + XN the orthogonal projection of
ZN onto XN’ linear operators AN(qN):XN *> XN and choose rational

functions c¢(z) and d(z) which satisfy the hypotheses and conditions of

theorem 4.2, We require

(5.1) There exist constants M and B such that AN(qN)E G(M,R)

on X, for all N sufficiently large and A =A(q) € G(M,B)

on Z.




(5.2)

(5.3)

(5.4)

(5.5)
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There exists a dense subset of Z, P C D(A(Q)) such that

RA(A(c_l))DCD for each A€C with ReA>B and for each

z€D we have
IAN(qN)PNz—PNA(q)z|N+O as N+~ vwhere PN=HNIN .

Z
TTOPNZ'>TTOZ for each zé&Z where TTO: +R" is defined by

N

Tro(n,¢) =n.

c(z) 1is a rational function approximation to the exponential
for which

(a) Ic(z) —ez] = O(lz|m+1) as z >0 with m>0
(b) degc(z)< m+l
(¢) c(z) has no poles in {z€C:Re z < 0}.

(d) There exists a constant MO such that

Ty k N
IC(*N—AN(qN)) I < MO k=0,1,2...p
for all N sufficiently large where ph is N
N Iy N, ‘v
that positive integer for which p _NX <T< (p +1)?

d(z) 1is a rational function approximation to the exponential
for which
GrN
(a) the operators d( _I\_I\)—AN(qN)) exist for all N
sufficiently large
|d (Org A ) I >
(b) w N(qN) PNz—PNIz N 0 as N ~» o

where 0< 6< 1.
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For a given choice of X HN’ AN(qN), c(z) and d(z), the triple

N’
{XN,HN,AN(qN)} will be referred to as the state approximation, while

the collection {XN,HN,AN(qN),c(z),d(z)} itself will be referred to
as an approximation scheme. We shall consider two particular families
of state approximations which can be shown to satisfy conditions (5.1),
(5.2) and (5.3) above. The first, and more primitive of the two is the
averaging or AVE state approximation ([4], [5],[7],[28]) in which the

functional component of the subspace X is chosen to be the span of a

N
finite collection of piecewise constant functions defined on [—rg,O].

The second family of state approximations is spline based and is known
as the SPL state approximation ([7], [9], [28]). In this case the sub-

space X is chosen to be the span of a finite collection of elements in

N

ZN having first or higher order spline functions as their functional
component. We note that in both the AVE and SPL state approximations
XN is finite dimensional.

Once a state approximation has been set, rational functions c¢(z)
and d(z) must be chosen in order to complete the construction of the
approximation scheme. Although others are available, we shall restrict
our attention to choices of c¢(z) and d(z) from the Padé table of
rational function approximations to the exponential ([28], [30]). We
shall demonstrate that for appropriate choices for c¢(z) and d(z)
taken from the Pade” table, the AVE and SPL state approximations generate

approximation schemes which satisfy conditions (5.1) through (5.5) above

and hence yield approximate solutions to the PIDDS.
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All of the ideas discussed in this section have appeared elsewhere.
In particular, since our discrete schemes are based upon the semi-discrete
approximation schemes for the PIDDS developed by Banks, Burns and Cliff
[7], the AVE and SPL state approximations are the same as those used in
[7] for a similar purpose. Furthermore, since our schemes are also
based upon thebdiscrete approximation framework for the integration of
LRFDE initial value problems developed in [28], the theory underlying
the appropriate choice of the rational functions c¢(z) and d(z) can
be found in [28]. Therefore, the construction of the state approximations,
the choosing of the rational functions and the arguments used in the
verification of conditions (5.1) through (5.5) for the particular schemes
will only be outlined and summarized here. For a detailed explanation
of the various constructs which we define and the verification of the
many results which we state without proof, the interested reader is
advised to consult [7] and [28].

Central to our discussion of the state approximations will be the
notion of dissipativeness of an operator. A closed linear operator
T:D(T)CH » H with dense domain and range in a Hilbert space H is

said to be dissipative if
Re<Tf, £>< 0

for each f€D(7). A dissipative operator is said to be maximal dissipa-
tive if it does not have a non-trivial dissipative extension. Clearly if
either H 1is finite dimensional or T is bounded then if T is dissipa-
tive it is maximal dissipative. Standard results from linear semigroup
theory ([20], [21], [23]) can be used to show that if there exists an

inner product <-,'>1 on H, equivalent to the standard inner product
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on H (with m1|-| < ]y £ m2| |) for which the operator T-BI is

lh

maximal dissipative for some f then T is the infinitesimal generator

of a C, semigroup of bounded linear operators on H, {T(t):t>0} such

0
my Bt . _ M
that |T(t)|§m—e . That is T€éGM,R) on H where M ==
1

For q= (u,rl,rz, - .r\)) €Q we define the weighting function

g(*3q9) on [-r,0] by

(1 —r§6<—r\)_1

2 --r\)_1 <8< —r\)_2
g(0;q) = o
v=-1 ~-r, < B < —r

o
<
N
- N
A |
@
A
o
-

and the inner product on 2, <°,->q by

0
(5.6) <), @ = nTc+f 0®)Ty(0)g(839)do

-r

It is easily seen that the gq-inner product defined above is equivalent

to the standard inner product on Z. 1In fact we have

(5.7) [“] < -], <N ]

q

If we recall the definitions of A(q) and L(q) given in section 2
using arguments similar to those found in [9] and [28] it can be shown

that for q€Q and z€D=D(A(q))
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(5.8) <A(Q)z,2>_ w(q)IZIfl
where
v 0
2
(5.9) w(q) = 1‘;—1+ |A0(a)| +Xk 1§1|Ai(o¢)|2+15 f |K(a,0)|“d6 .
-r
\Y

Since Q 1is a compact subset of Ru+v and the system coefficients have
been assumed to depend continuously upon the parameters we have that there
exists a B >0 such that w(q) < B for all q€Q. It is also not
difficult to show (see [25]) that for A €C with ReA>B8, R(A(qQ) -AI) =2
and hence by Theorem I.4.3 of [21] we have that A(q) -BI is a maximal
dissipative operator on Z for all q€Q. In light of our earlier

remarks, it therefore must hold that A(q) €G(¥V,B) on Z for all q€Q.

Remark 5.1 While we have defined A(q) to be a mapping from D C Z
into Z for each q€Q, it can also be defined as an operator from

D(A(q’ CZq into Zq where Zq=Rn><Ltzl(-r‘v‘,0) and
D(A(@) = {(n,0) €Z [ n = 6(0), b €W ,(-r, 0} .

In both cases A(q)($(0),9) = (L(q)9,Dp) where in the first case D¢
is defined on [—r,O] and in the second case on [-r\),O]. In either case,
however, the two definitions lead to essentially the same operator and

hence we use them interchangeably.

5.1 The AVE State Approximation

N N N . s - .
Let {qN} = {(OLN,rl,rz,...rv)} CQ be given with q *>q€Q. Define

x? € erl (—rg,O) to be the characteristic function of the interval

N
r
s = (3-1) T\{ ) j=2,3,...8 and xli] to be the characteristic function

N
Iy
N
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N
-r
of the interval ['ﬁéi ,0] . Let XN be the closed subspaces of
_on n N
ZN-R ><L2(—rv,0) given by
N
N N N
X, = {(,9) €z NeR®, ¢ = 2ovix., v, €R"} .
N j=lJ J h|

With XN as above, the orthogonal projection HN of ZN onto XN with

respect to the standard innerproduct on ZN can be computed and is given

by
> )
N N
I'[ _
N(Ms®) (n, El %5 X
where N
-(3-Dr
Y
N N N
¢j =N $(6)ds ji=1,2,...N
r ._N
v -ir,
N

In order to define the operator AN(qN) we first define the operators

. n . n, N
LN(qN).XN -+ R and DN(qN).XN-*LZ(—rv,O) by

N v N
N N, _ NN, N
Ly(ay) (™, jZ=31 viYg) = Aglagn + iZ=:1 jZ=21 A (@)vixy (1)

N n
Ty N N
+ — K. (o )v,
N1 3y
. N
—(J—l)i\i
N N N
where Kj(a) =N K(a,8)do j=1,2,...N
Y -jr

and
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N

N N N,_N

Dy (ay) (M5 Z Wi = L ) v
j=1 j=1 r,

where vOEn respectively. Let AN(qN):XN->X be given by

N
(5.10) AN(qN)(n,¢>) = (LN(QN) n,9), DN(QN) m,9))
Let J_ = {jN, J\] } be an index set where jN=N and jN is
N 1 v-1 N v i
N [ N \) N r\)] . ;
the index such that —riG Jl N (31— 1) - i=1,2...v-1. Define
the numbers {a?}' by the following recurrence relation. Let a§= 1
and
N .
aj+1+ 1 if je JN
N
a, =
]
N if j¢J
aj_*_1 N

We next define the piecewise constant weighting function gN( ;qN) by

N 5Ty -(G-DEY
gN(G;qN) =aj for <6< j=1,2,..N and define the inner-

N - N

roduct <-,-> on Z b
P gy N DY

0

T T
<M,0), @p> =nc+ [ 60) p(®)ey (B340 .
BN

V

The <-+,-> innerproduct is equivalent to the standard innerproduct
N

on ZN and in fact
(5.11) [y < 11, 2 Al
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It can now be shown (see [7]) that for AN(qN) as it is given in (5.10)

above and z¢€ XN

2 2

(5.12) <Aglag)z,z>, < wlalezl) < 8|zl
NYINT T2 gN N N &N
where w(gq) 1is given by (5.9). Since XN is finite dimensional and

therefore D(AN(qN))=X we have AN(qN)GG(/\_)_,B) N=1,2... and

N
condition (5.1) is satisfied. In addition it can also be shown (see

[25]) that

r
\Y
(5.13) T+ 3 Ayl |, € 1+K(gy

rN
\Y o,
N N

< 1+ %
where o 1is a constant independent of N and q€Q. The bound given
in (5.13) is a somewhat stronger result than dissipativeness in that
(5.13) implies (5.12) with B= 3 (see Lemma 5.15 of [28]). The
importance of condition (5.13) will become clear when the choosing of
the rétional function c¢(z) is discussed in Subsection 5.3.

If we let D = {($(0),d) GZI¢>€ C?(—r,O)}, then 0 is a dense subset
of Z,D CD=D(A(q)) and for AE€C with ReA>B we have R)\(A(H)DC

D(Az(a)) C D. Moreover, it can be shown (see [7]) that for zé€D
IAN(qN)PNz—PNA(c_l)le >0 as N>

and condition (5.2) is satisfied.

Finally, for (n,9) €Z we have

N
0

18 2 =10, T 6%y = n =
N j=1 173

and hence we have that conditions (5.1), (5.2) and (5.3) are satisfied

for AVE state approximation.
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5.2 The SPL State Approximation

In this subsection we describe spline based state approximations
using first order or linear splines. All of the results stated below
can be modified so as to be applicable to spline based state approximations
employing higher order splines.
Once again we assume {q.} ={ (@ rN rN rN)} CQ with +q€Q
g N N F12Tgec--Ly qN q

as N=>> , We partition each of the subintervals [—rg,—rg_l] k=1,2...V

N
into N equal subintervals to define the partition {9?}\)‘ ) of
J=
[—rN,OJ where
A
N _ . N N N
Gj = =(3 - (k-1)N) (rk rk—l)/N+rk+1

j=(k-1)N,...kN, k=1,2...V, and define the finite dimensional subspace

X of Z by

N N
Xy = )(q;(o),(b) €2, |9 is a first order spline with
VN
knots at {6V} '
J j=1‘
We let 1[I, be the orthogonal projection of Z_. onto X, with respect

N N N

to the <-,->q innerproduct defined in (5.6). Finally we let
N

AN(qN):X_N—>XN be given by

We note that

R(IL) = X C {(n,9) € ZNI n=¢(0),¢ewr1”2(—r§,0)}

D(A(qy))

and hence the expression for AN(qN) given by (5.14) is well defined.
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Using (5.8), (5.14) and the fact that IIN is the orthogonal projection

of ZN onto XN with respect to the <:,°> inner product we have for
N
all zéXN
= z >
(5.15) <AN(qN)z,z>qN <HNA(qN)HNz,z ay

2
<A(qTyz ,HNz>clN < wlay) IIINz | ay

2 2
< wiaplzl? < Blzl
N Iy
where once again w(q) 1is given by (5.9). Since XN is finite dimensional
i = /_ =
with D(AN(qN)) XN we have therefore that AN(qN)GG( V,B) N=1,2...
and condition (5.1) is satisfied.

Next, if we define D=D(A3(c_1)), we have that D 1is a dense subset
of Z (see [23]) and for A €C with Rer>B, Ry (A(Q)) DC D. Using the
properties of interpolatory splines, the fact that HN is an orthogonal
projection (and hence has certain minimality properties) and the norm

equivalence relation

(5.16)

given by (5.7) it can be shown that
IAN(qN)PNz —PNA(c_l)le +0 as N> @

for each z€D. Furthermore it can also be argued that for ¢ €7D ,
IHNINCP - INCNN’* 0 as N>, However D is a dense subset of Z and
the operators {HNIN— IN} are uniformly bounded. Recalling that
PN=HNIN it follows therefore that IPNz— INz IN >0 as N?>* for all

z€Z. This in turn implies that
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TTO(PNz) >0,

v

for all z€Z and the SPL state approxiﬁation defined above satisfies

conditions (5.1), (5.2) and (5.3).

5.3 Selecting the Rational Functions c(z) and d(z)

Our primary objective in this subsection is to summarize the theory
developed in [28] for the selection of rational functions c¢(z) and d(z)
which satisfy conditions (5.4) and (5.5) respectively for a given state
approximation triple {XN,HN,AN(qN)}. For a given approximation scheme
{XN,HN,AN(qN),c(z),d(z)} the most difficult condition to verify is the
temporal stability condition (5.4)(d). As we shall soon see, it is the
happy circumstance that the relatively easily verified spatial stability
condition (5.1) (which we already know is satisfied by the AVE and SPL
state approximations) is, under the appropriate hypotheses, sufficient

to guarantee that (5.4)(d) holds as well,

Definition 5.1 We shall say that a rational function r(z) of the complex

variable z 1is acceptable if

(1) |e(z) -e?| = 0(|]z]™) as z >0 m>o0

(2) || <1 z€{z€C:Rez < 0} .

Although there are many families of rational functions which admit
acceptable subclasses, among the most widely studied are the Pade
rational function approximations to the exponential. The Padé approxima-
tions, which can be arranged in a tableau {pjk(z)} commonly referred to

as the Padé table, are defined by the following formulae
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ij(z) =njk(z)/djk(z) i, k=1,2...

where

k )

_ (j+k-£) Ik} 2

02 = 3 Groro =pT 2
£=0

3
_ (J+k-£) 15! 2
) = o Grorgent <2
It is easily seen that

(5.17) deg pjk(z)=k-j

and it can be shown that

Ij+k+1

(5.18) lpjk(z)-_ez| = o(]z )y z+>0.

Since the convergence rate estimates given in Theorem 3.2 are dependent
upon the degree to which the rational function c(z) approximates e?
and since the Padé approximations approximate e’ to an arbitrarily
high degree, in this presentation we are content to restrict our attention
to them alone. Fér a discussion of other families of rational function
approximations to the exponential which could be employed see [28].

The following result due to Ehle [151 identifies an acceptable sub-

class contained in the Padé approximations.

Theorem 5.1 The diagonal and first two subdiagonal entries in the Pade
table of rational function approximations to the exponential are acceptable.

That is, the collection of rational functions given by
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oy = Py a1 @m0 ¥ o 2@ hang VP 1 (0

is an acceptable subclass of the Padé approximations.

To this author's knowledge, it has not as of yet been demonstrated
that Theorem 5.1 above identifies the entire acceptable subclass contained
in the Padé approximations. Ehle [15], and more recently, other authors
(see [28]) however, have provided evidence to the fact that this is indeed
the case.

From Definition 5.1, (5.17), (5.18) and Theorem 5.1 it is immediately
clear that the rational functions contained in the class Jy; satisfy
conditions (5.4)(a), (b) and (c). We next turn our attention to the
temporal stability condition (5.4)(d).

The following definition and result due to J. von Neumann [26] will

prove useful in our discussion below.

Definition 5.2 A set ZCC (completed by the point at infinity) will

be called a Spectral Set for the bounded linear transformation T on

the Hilbert space H if (a) it is closed, (b)Z 23 o(t) and (c) for
every rational function u(z) satisfying the inequality |u(z)| <1

for all 2z € 7 we have that |u(T)| < 1.

Remark 5.2 In Definition 5.2 above, the conditions Z 2 6(T) and

lu(z)[ < 1 for all z€ 7 guarantee the existence of the operator u(T).

Theorem 5.2 A necessary and sufficient condition that the halfplane
{z€C:Rez < 0} be a spectral set for the bounded linear transformation
T dis that T be a maximal dissipative operator on H. That is

Re <Tf,f>< 0 for all f€H.
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The next lemma due to Hersh and Kato [18] provides the necessary link
between the ideas of acceptability and spectral sets. The proof of this

result in the form in which it is stated below can be found in [28].

Lemma 5.1 Suppose {z € C:Rez< O} is a spectral set for the operator
T-BI where B>0 and T is a bounded linear operator on a Hilbert
space H. Suppose further that r(z) 1is an acceptable rational function.

Then
|r(hT) | < 1+Bkh

where £k is a positive constant independent of h and T.

Lemma 5.1 can now be used to determine an appropriate choice for

c(z) for the AVE and SPL state approximations.

Theorem 5.3 Let {XN,HN,AN(qN)} be either the AVE or SPL state approxima-

tion triple. Then if c(z)éjxg, condition (5.4) is satisfied.

Proof
We need only to demonstrate that condition (5.4)(d) holds. Using
respectively (5.12) and (5.15) for the AVE and SPL state approximations

we have for =z¢e XN

A

2
< AN(qN)z,z>g BlzlgN

N

and

8|z|® .
N N

<AN(qN)z,z>

I'A
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In either case, therefore, we have by Theorem 5.2 that {z€C:Rez < 0}
is a spectral set for Ac(qy) . Theorem 5.1 and c(z) e;ag imply that
c(z) is acceptable. Thus, by Lemma 5.1 we have
2 i
IC(? AN(qN))|gN < 1+Bk w

in the case of the AVE state approximation, and

rN rN
V V
e (-N AN(qN))|qN <148k 2

for the SPL state approximation. Recalling the norm equivalence relation

(5.11), for the AVE state approximation we have for =z¢€ XN and

ke{0,1,2...0M)

N rN X

cl 2 A (q)) =z
N An'Iy

By

BRIy k Bko [V
¢ Y Ml Yol
< V5 PRz

and hence
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In a similar manner, using the norm equivalence relation (5.16), the

same bound can be shown to hold in the case of the SPL state approximation

and the theorem is proven.

Remark 5.3 Rather than applying Lemma 5.1 to the AVE and SPL state

approximations directly, we could have used it to establish a somewhat

more general result. Indeed, for a given spatially stable state approxima-

tion {XN,HN,AN(qN)} and acceptable rational function c¢(z), Lemma 5.1

implies that condition (5.4)(d) is satisfied. That is the resulting

approximation schemes {XN,HN,AN(qN),c(z),*} will be temporally stable.
For the AVE and SPL state approximations and c¢(z) E%, Theorem 5.3

quarantees that it is possible to construct an approximation scheme

satisfying conditions (5.1), (5.2), (5.3) and (5.4). However for

c(z) =1r(z)/s(z) G% we must have th;t degs(z)>0. This implies that

it will be necessary to compute s(%? AN(qN))-l . Furthermore, in order

to increase the estimated rate of convergence, we must increase degs(z) ,

and hénce be required to invert a relatively high degree polynomial in

the operator %?AN(qN)' This ié a numerically illconditioned procedure

and should,if possible, be avoided. 1In the case of the AVE state approxima-

tion this can be achieved. Let
_ =]
AN IO

The collection _E% consists of the top row of the Padé table whose
entries are the Maclaurin polynomials for e”. .We note that 1% F\J&% = ¢

and observe that jé; consists of precisely those rational functions in

the Padé table for which no operator inverse need be calculated in the
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N
r

\Y
i — . i £ ®
computation of pjk( N AN(qN)) Indeed, choosing c(z) rom >
results in an explicit approximation scheme, where as choosing c(z)
from ng results in an implicit approximation scheme.

It can be shown (see [28] Theorem 5.17) that if

N N N
r, ( r, o v
N+ & Ayl =lpgy \ & Ayl < 1+ 7
for some o>0 independent of N and some norm || || equivalent to the

standard norm on XN (with norm equivalence constants independent of
N) then there exists an a=0a(£) > 0 such that

r§ ar{q)
oy o (2 Agtap < 1455

~

Therefore, in light of (5.13), arguing as we did in the proof of Theorem

5.3 the following result can be established.

Theorem 5.4 For the AVE state approximation and c(z) € ?% , condition
(5.4) is satisfied.

In [28] a heuristic argumenf in support of choosing d(z) as a
rational function approximation to the exponential is given. This
argument is borne out empirically in that in numerical tests, enhanced
convergence properties are observed for schemes constructed with d(z)
chosen in this way. Therefore we want to choose d(z) as a rational
function approximation to the exponential for which condition (5.5) is
satisfied. It is easily verified (see [28] Theorem 10.3) that if d(z)
is chosen to satisfy condition (5.4) it will satisfy condition (5.35) as
well. For the AVE state approximation, therefore, d(z) can be chosen

from JX%QL%;, while for the SPL state approximation d(z) can be chosen
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from &/ . However, it is shown in [28] that for the SPL state approxima-
P

tion d(z) can actually be chosen from JZ%WJ\%; and still satisfy
condition (5.5).

Finally, we can summarize the results of this section as follows.
For an approximation scheme {XN,HN,AN(qN),c(z),d(z)} constructed with
the AVE state approximation and c¢(z) and d(z) chosen from )/p U% .
conditions (5.1) through (5.5) will be satisfied and a sequence of solutions
to the resulting sequence of approximating parameter identification
problems will contain a subsequence converging to a solution of the PIDDS.
A similar statement can be made for approximation schemes constructed with

the SPL state approximation, c¢(z) chosen from JX; "and d(z) chosen from

6. Numerical Results

In this section we discuss and analyze numerical results obtained by
implementing the approximation schemes developed in the previous sections
and then applying them to actual parameter identification problems in
which the governing control system is a linear functional differential
equation of retarded type. All of the examples which follow were run on
an IBM 370/158 computer using software packages written in Fortran. We
provide no information regarding storage requirements or computational
efficiency in that our primary objective in performing these tests was
to demonstrate the feasibility of our methods.

The approximating parameter identification problems given in Section
4 were constructed using the AVE and SPL (linear spline based) state
approximations defined in Section 5, c¢(z2) =_p22(z) 6%, d(z) =p0’2(z) 655;

and 6=.5. The effect of variation in the choice of c¢(z), d(z) and 6
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were not tested here since this was studied in [28]. We have assumed
that we have been given observational data on the interval [0,2] which

resulted from input u-= uge PCl(O,Z) where

0 t< £
u (t) =
2()
1 £< t .
The norms B NP B A -Iw which appear in (2.1) have all been taken
1 2 3
to be the standard Euclidean norm on Rz. To obtain observational data

Z, for each example the state equation was integrated using the method

of steps [16], a fourth order Runge-Kutta numerical integration scheme

for ordinary differential equation initial value problems, and a pre-
selected set of true parameter values Y*==(n*,¢*,a*,h%). We emphasize
that the integration method used to obtain the observational data was
completely independent of the approximation schemes being tested and hence
should not have contaminated our results.

The resulting finite dimensional approximating parameter identification
problems were solved using a modified version of the integration package
for LRFDE initial value problems developed in [28] and the IMSL [19]
routine ZXSSQ, a finite difference Levenberg-Marquardt scheme for solving
the problem of minimizing the sum of squares of M non-linear functions
in N -unknowns. The Levenberg-Marquardt algorithm is an iterative gradient
projection scheme which must be provided with an initial estimate of the

unknown parameters.
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Since among the principal advantages of our approximation schemes
is their ability to identify the delays, it is this feature which we
are most interested in testing. The examples which have been included
below, therefore, all have the delays in the problem among the parameters
to be identified. A discussion of the performance of the schemes on
examples in which the delays need not be identified can be found in [11].
Two of the four examples which appear below have also been included
in [6] where they are used to test the semi-discrete schemes developed
in [7]. A comparison of the performance of the two methods (based upon
the two examples below, and others not included here) reveals that they
exhibit similar behavior. The similarity becomes especially apparent
for the cases N=16 and 32, at which point the %? time step in the
totally discrete schemes becomes comparable to the 1/32 time step used
in the integration of the resulting approximating ordinary differential
equation in the semi-discrete schemes. In addition, as N increases,
the number of observational data points, pN used by the totally discrete
schemes increases and becomes comparable to the 101 (N independent) data
points used in the testing of the semi-~discrete schemes in [6]. It is

interesting to note that a reasonably good fit can be achieved using

relatively few observations,

Example 6.1 (Banks, Burns, Cliff [6] Example S 2.2)
In this example we identify the time delay r in the scalar first

order equation given by

(6.1) x(t) = .05x(t) - 4.0x(t-r) +u 1 (B)

with initial condition
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(6.2) x(0) = 1.0 xo(s)=1 -r<s<0
and output
(6.3) y(t) = x(t) .

Observational data was generated by using a true parameter value of
r*==1 . The initial estimate of the parameter was taken to be rN’0==.6.
In Table 6.1 below, for each N and each state approximation we give
the final converged value for the parameter as returned by the routine
ZXSSQ as a solution to the approximating parameter identification
problem.

Based upon the numerical results discussed in [28], it is not

surprising to find the performance of the SPL state approximation

superior to that of the AVE.

N AVE SPL
.976458 .982173
1.11242 .984818
1.08012 984677
16 1.04227 .996628
32 1.10351 1.00126
£ =1.0 £ =1.0

Table 6.1
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In this example we consider the state equation (6.1), initial data

(6.2) and output (6.3) of Example 6.1

and identify the coefficient a

x(t) =.05x(t) - alx(t—r) +u.1(t)

x(0) =1 xo(s) =1

y(t) =x(t)

-r<

s<0

of the delay term and the delay r

1
*
itself. The true values of the parameters were taken to be a1==4.0
*
and r =1 respectively with start up values given by a?’0==3.0 and

rN’O==.6 . Our results are summarized in Table 6.2.

Example 6.3 (Banks, Burns, Cliff [6] Example 01.2)

In this example we identify the time delay r

N AVE SPL
Did Not Converge Did Not Converge
4.59759 1.20779 4.13681 .991267
Did Not Converge 4,09309 .987206
16 4.17380 1.04557 4.02157 .996570
32 4.06641 1.02561 3.99287 1.00124
a}=4.0 r*=1.0 a] =4.0 r*=1.0
Table 6.2

in the damped

harmonic oscillator with delayed damping and delayed restoring force

given by
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(6.4) x(t) +36 x(t) +2.5% (t-r) +9.0x (t-r) = u.l(t)

together with initial conditions and oufput given by

(6.5) x(0) = 1 x(0) =0

(6.6) xo(s)=1 :'co(s)=0 -r<s<0
and

(6.7) y(t) =x(t)

respectively. The initial value problem (6.4), (6.5), (6.6), (6.7) can

be wirtten as an equivalent first order system:

0 0 0
X(t-r) + u 1(t)
-9.0 -=2.5 1 '

01

X(t) = [ } X(t) +

-36 O

y(t) = [1,0] X(t).

x(t)
where X(t) = .
x(t)

*
The true parameter value was taken to be r =1.0 with start up

N,0_ 1.2. Our results for this example, which are given

value given by r
in Table 6.3 once again exhibit the fact that the SPL schemes are superior

to the AVE,
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N AVE SPL
Did Not Converge 1.05621
1.22407 1.18990
1.14306 .991904
16 1.03183 . 998599
r*=1.0 r*=1.0
Table 6.3

Example 6.4

Here we once again consider the state equation (6.4), initial conditions
(6.5), (6.6) and output (6.7) and identify the coefficient of the restoring
force term and the time delay. Written as an equivalent first order system,

the state equation, initial conditions and output are given by

. 0 1 0 0 0
X(t) = 2 X(t) + X(t-r) + u 1(t)
- 0 -9.0 -2.5 1 *
1 1
X(0) = Xo(s) = -r<s< 0
0 0

y(t) = [1,0] X(¢).

x(t)
respectively where X(t) = .
x(t)
The true parameter values were taken to be w*==6.0 and r*= 1.0 with

N,0 N,0

start up values given by w =5.0 and r ’ =1.2 respectively. Our

results for this example are summarized in Table 6.4.
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In this example, as was the

dimensional examples we studied, the

than the AVE.

for the SPL schemes to converge while the AVE schemes did not.
examples studied, for
always produce a solution to the approximating parameter identification
problem. Moreover, as N

problems appeared to be converging to the true parameter values used to

In fact, even for

wn

N sufficiently large, the SPL based schemes would

generate the observational data.

large values of N,

N AVE SPL
4.53647 1.16643. 6.26975 1.00952
6.28624 .895982 6.34399 .921017
Did Not Converge 6.05748 .985784
16 6.07952 1.04665 6.01031 .997449
0w =6.0 r=1.0 W =6.0 r=1.0
Table 6.4

case in all multi-parameter, higher
PL schemes performed f[ar better

it was not uncommon

increased, the solutions to the approximating

In all
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